
Events, Triggers, and 
Explosions

Almost every game needs some form of event system that informs the game logic 
about collisions that have occurred between objects, and many of these events are 
triggered by invisible volumes of space that react when certain game objects enter 
them. In this chapter, we'll learn how to build these features and then apply them  
by simulating an explosion!

Building a collision event system
In a game such as Angry Birds, we would want to know when a breakable object such 
as a pig or piece of wood has collided with something, so that we can determine the 
amount of damage that was dealt, and whether or not the object should be destroyed, 
which in turn spawns some particle effects and increments the player's score.

It's the game logic's job to distinguish between the objects, but it's the physics engine's 
responsibility to send these events in the first place and then we can extract this 
information from Bullet through its persistent manifolds.

Continue from here using the Chapter6.1_
CollisionEvents project files.
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Explaining the persistent manifolds
Persistent manifolds are the objects that store information between pairs of objects 
that pass the broad phase. If we remember our physics engine theory from Chapter 3, 
Physics Initialization, the broad phase returns a shortlist of the object pairs that might 
be touching, but are not necessarily touching. They could still be a short distance 
apart from one another, so the existence of a manifold does not imply a collision. 
Once you have the manifolds, there's still a little more work to do to verify if there is 
a collision between the object pair.

One of the most common mistakes made with the Bullet physics 
engine is to assume that the existence of a manifold is enough to 
signal a collision. This results in detecting collision events a couple of 
frames too early (while the objects are still approaching one another) 
and detecting separation events too late (once they've separated far 
enough away that they no longer pass the broad phase). This often 
results in a desire to blame Bullet for being sluggish, when the fault 
lies with the user's original assumptions. Be warned!

Manifolds reside within the collision dispatcher (a core Bullet object we created back in 
Chapter 3, Physics Initialization), and Bullet keeps the same manifolds in memory for as 
long as the same object pairs keep passing the broad phase. This is useful if you want 
to keep querying the same contact information between pairs of objects over time. This 
is where the persistent part comes in, which serves to optimize the memory allocation 
process by minimizing how often the manifolds are created and destroyed.

Bullet is absolutely riddled with subtle optimizations and this is 
just one of them. This is all the more reason to use a known good 
physics solution like Bullet, instead of trying to take on the world 
and building your own!

The manifold class in question is btPersistentManifold and we can gain access 
to the manifold list through the collision dispatcher's getNumManifolds() and 
getManifoldByIndexInternal() functions.

Each manifold contains a handful of different functions and member variables 
to make use of, but the ones we're most interested in for now are getBody0(), 
getBody1(), and getNumContacts(). These functions return the two bodies in 
the object pair that passed the broad phase, and the number of contacts detected 
between them. We will use these functions to verify if a collision has actually taken 
place, and send the involved objects through an event.
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Managing the collision event
There are essentially two ways to handle collision events: either send an event every 
update while two objects are touching (and continuously while they're still touching), 
or send events both when the objects collide and when the objects separate.

In almost all cases it is wiser to pick the latter option, since it is simply an optimized 
version of the first. If we know when the objects start and stop touching, then we 
can assume that the objects are still touching between those two moments in time. 
So long as the system also informs us of peculiar cases in separation (such as if one 
object is destroyed, or teleports away while they're still touching), then we have 
everything we need for a collision event system.

Bullet strives to be feature-rich, but also flexible, allowing us to build custom 
solutions to problems such as this; so this feature is not built into Bullet by default. 
In other words, we will need to build this logic ourselves. Our goals are simple; 
determine if a pair of objects have either collided or separated during the step,  
and if so, broadcast the corresponding event. The basic process is as follows:

1.	 For each manifold, check if the two objects are touching (the number of 
contact points will be greater than zero).

2.	 If so, add the pair to a list of pairs that we found in this step.
3.	 If the same pair was not detected during the previous step, broadcast a 

collision event.
4.	 Once we've finished checking the manifolds, create another list of collision 

objects that contains only the missing collision pairs between the previous 
step and this step.

5.	 For each pair that is missing, broadcast a separation event.
6.	 Overwrite the list of collision pairs from the previous step, with the list we 

created for this step.

There are several STL (Standard Template Library) objects and functions we can use 
to make these steps easier. An std::pair can be used to store the objects in pairs, 
and can be stored within an std::set. These sets let us perform rapid comparisons 
between two sets using a helpful function, std::set_difference(). This function 
tells us the elements that are present in the first set, but not in the second.
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The following diagram shows how std::set_difference returns only objects pairs 
that are present in the first set, but missing from the second set. Note that it does not 
return new object pairs from the second set.
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The most important function introduced in this chapter's source code is 
CheckForCollisionEvents(). The code may look a little intimidating at first, but 
it simply implements the steps listed previously. The comments should help us to 
identify each step.

When we detect a collision or separation, we will want some way to inform the game 
logic of it. These two functions will do the job nicely:

virtual void CollisionEvent(btRigidBody* pBody0, btRigidBody *  
  pBody1);
virtual void SeparationEvent(btRigidBody * pBody0, btRigidBody *  
  pBody1);

In order to test this feature, we introduce the following code to turn colliding objects 
white (and similar code to turn separating objects black):

void BulletOpenGLApplication::CollisionEvent(const  
  btCollisionObject * pBody0, const btCollisionObject * pBody1) {
  GameObject* pObj0 = FindGameObject((btRigidBody*)pBody0);
  pObj0->SetColor(btVector3(1.0,1.0,1.0));
  GameObject* pObj1 = FindGameObject((btRigidBody*)pBody1);
  pObj1->SetColor(btVector3(1.0,1.0,1.0));
}
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Note that these color changing commands are commented out 
in future project code.

When we launch the application, we should expect colliding and separating objects to 
change to the colors give in CollisionEvent(). Colliding objects should turn white, 
and separated objects should turn black. But, when objects have finished moving, we 
observe something that might seem a little counterintuitive. The following screenshot 
shows the two objects colored differently once they come to rest:

But, if we think about the order of events for a moment, it begins to make sense:

•	 When the first box collides with the ground plane, this turns both objects  
(the box and the ground plane) white.

•	 The second box then collides with the first turning the second box white, 
while the first box stays white.

•	 Next, the second box separates from the first box, meaning both objects  
turn black.

•	 Finally, the second box collides with the ground plane, turning the box  
white once again.
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What was the last color that the first box turned to? The answer is black, because the 
last event it was involved in was a separation with the second box. But, how can the 
box be black if it's touching something? This is an intentional design consequence of 
this particular style of collision event management; one where we only recognize the 
collision and separation events.

If we wanted objects to remember that they're still touching something, we would have 
to introduce some internal method of counting how many objects they're still in contact 
with, and incrementing/decrementing the count each time a collision or separation 
event comes along. This naturally consumes a little memory and processing time, but 
it's certainly far more optimized than the alternative of spamming a new collision 
event every step while two objects are still touching. We want to avoid wasting CPU 
cycles telling ourselves information that we already know.

The CollisionEvent() and SeparationEvent() functions can be used by a game 
logic to determine if, when, and how two objects have collided. Since they hand over 
the rigid bodies involved in the collision, we can determine all kinds of important 
physics information, such as the points of contact (where they hit), and the difference 
in velocity/impulse force of the two bodies (how hard they hit). From there we can 
construct pretty much whatever physics collision-related game logic we desire.

Try picking up, or introducing more objects with the left/right mouse 
buttons, causing further separations and collisions until you get a feel 
for how this system works.

Building trigger volumes
Imagine we want an invisible volume of space, and when the player stumbles into it, 
it triggers a trap or a cutscene. This concept is used countlessly throughout modern 
games (in fact, it's difficult to think of one in the last decade that doesn't use them 
somewhere).

This effect is achieved in Bullet by simply disabling the contact responses for any 
given rigid body.

Continue from here using the Chapter6.2_TriggerVolumes 
project files.
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Disabling contact response
There is no specific class required to build a trigger volume, but there is an essential 
flag which we can apply to any object: CF_NO_CONTACT_RESPONSE. This flag disables 
all contact response, informing Bullet that it should not calculate any physical 
response when other objects collide with the flagged object. This does not prevent it 
from performing broad and narrow phase collision detection and informing us when 
an overlap occurs, hence our CollisionEvent() and CollisionSeparation() 
functions will still be called even for objects flagged in this way. The only difference 
is that other objects will pass through it unhindered.

Here's a snippet of code from BasicDemo::CreateObjects():

// create a trigger volume
m_pTrigger = new btCollisionObject();
// create a box for the trigger's shape
m_pTrigger->setCollisionShape(new btBoxShape(btVector3(1,0.25,1)));
// set the trigger's position
btTransform triggerTrans;
triggerTrans.setIdentity();
triggerTrans.setOrigin(btVector3(0,1.5,0));
m_pTrigger->setWorldTransform(triggerTrans);
// flag the trigger to ignore contact responses
m_pTrigger->setCollisionFlags(btCollisionObject::CF_NO_CONTACT_
RESPONSE);
// add the trigger to our world
m_pWorld->addCollisionObject(m_pTrigger);

The previous code creates a trigger volume hovering just above the ground plane. 
We don't want these trigger volumes to be rendered during runtime since these 
kinds of triggers usually remain invisible to the player. So we avoided using our 
CreateGameObject() function (which would have added it to the list of objects  
and automatically render it), and instead we built it manually.

However, even though it is invisible to the player, we can still observe it through 
the debug renderer. If we enable wireframe mode (the W key), Bullet will draw the 
shape for us so that we can visualize the trigger volume in the space.

Meanwhile, BasicDemo includes an override for CollisionEvent() which checks if 
the two objects involved are the box and the trigger, and if so, it spawns a large box 
besides it. Note that we don't necessarily know if pBody0 or pBody1 represents either 
object, so we need to check both pointers:

void BasicDemo::CollisionEvent(btRigidBody* pBody0, btRigidBody* 
pBody1) {
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  // did the box collide with the trigger?
  if (pBody0 == m_pBox->GetRigidBody() && pBody1 == m_pTrigger ||
    pBody1 == m_pBox->GetRigidBody() && pBody0 == m_pTrigger) {
    // if yes, create a big green box nearby
      CreateGameObject(new btBoxShape(btVector3(2,2,2)), 2.0, 
btVector3(0.3, 0.7, 0.3), btVector3(5, 10, 0));
  }
}

Launch the application, and enable wireframe debugging (the W key). We should 
see a trigger volume (denoted by a white wireframe) just below the spawn point 
of the first box. Moments after, the box should collide with the trigger, causing 
CollisionEvent() to be called. Since the two objects involved are the trigger 
volume, and the first box, the if statement will become true, and a new game object 
will be created. The following screenshot shows a new object (the large box) being 
spawned after the first box collides with the trigger volume:

Force, torque, and impulse
Next, we will explore how to manipulate the motion of our collision objects  
through forces, torques, and impulses and also discuss the important differences 
between them.

Continue from here using the Chapter6.3_
ForceTorqueAndImpulse project files.
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Understanding the object motion
We have already observed one method of moving a rigid body with our 
ShootBox() command back in Chapter 5, Raycasting and Constraints, by calling the 
setLinearVelocity() function on the object's rigid body after creating it. This 
function sets the magnitude and direction of the object's linear motion. Meanwhile, 
another commonly used motion altering command is setAngularVelocity(), 
which is used to set the object's rotational velocity.

However, simple velocity altering commands like these do not add much life or 
believability to a scene, since we humans are also familiar with the concept of 
acceleration due to effects such as gravity, or the inertia we feel when we drive a 
car, ride a bike, or even walk. Acceleration can be applied in Bullet through the use 
of forces. There are different types of force, where each one has some important 
distinctions that must be understood before making use of them. We'll discuss the 
following commands that are accessible through any btRigidBody:

•	 applyForce()

•	 applyTorque()

•	 applyImpulse()

•	 applyTorqueImpulse()

•	 applyCentralForce()

•	 applyCentralImpulse()

All of the preceding functions require a btVector3 object to define the direction and 
the strength of the effect. Just like the Newtonian definition, forces (such as gravity) 
continuously accelerate an object in a given direction, but do not affect their rotation. 
Meanwhile, torque is the rotational equivalent of a force, applying a rotational 
acceleration to an object causing it to rotate in place around its center of mass.  
Hence, applyForce() and applyTorque() provide the means for applying  
these effects, respectively.

Meanwhile, the difference between forces and impulses is that impulses are forces 
that are independent of time. For instance, if we applied a force to an object for a 
single step, the resultant acceleration on that object would depend on how much 
time had passed during that step. Thus, two computers running at slightly different 
time steps would see two completely different resultant velocities of the object after 
the same action. This would be very bad for a networked game, and equally bad for 
a single player game that suffered a sudden spike in activity that increased the step 
time temporarily.
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However, applying an impulse for a single step would give us the exact same 
result on both computers because the resultant velocity is calculated without any 
dependence on time. Thus, if we want to apply an instantaneous force, it is better to 
use applyImpulse(). Whereas, if we want to move objects over several iterations, 
then it is better to use applyForce(). Similarly, applying a Torque Impulse is an 
identical concept, except it applies a rotational impulse. Hence, we would use 
applyTorqueImpulse() if we wanted an instantaneous rotational kick.

Finally, the difference between applyCentralForce() and applyForce() is simply 
that the former always applies the force to the center of mass of the object, while the 
latter requires us to provide a position relative to the center of mass (which could 
always default to the center of mass, anyway). Basically, the Central functions are 
there for convenience, while the rest are more flexible since in the real world if we 
pushed a box on its edge we would expect it to move linearly (force), but also rotate a 
little (torque) as it moved. The same distinction applies to applyCentralImpulse() 
and applyImpulse().

Knowing all of this, if we follow the pattern of function names we may notice that 
applyCentralTorque() is missing. This is because there's no such thing in the laws 
of physics. A torque must always be applied at an offset from the center of mass, 
since a central torque would simply be a linear force.

Applying forces
In the source code for this section, BasicDemo has been modified to grab the G key, 
and apply a force of 20 units in the y axis to the first box (the red one). This is strong 
enough to counteract the force of gravity (default of -10 in the y axis), and cause our 
object to accelerate upwards while the key is held down.

Check the Keyboard(), KeyboardUp(), and UpdateScene() functions of BasicDemo 
to see this process in action.

Note that each of the override functions used in this process 
begins by calling back to the base class implementation of the 
same function. This ensures that our base class code, which 
handles keyboard input and scene updating, is still called before 
we do anything unique in our derived class.
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Launch our application and try pressing and holding the G key. Our first box should 
now begin to float. The following screenshot shows how our first box can be lifted 
up, land back in the trigger volume, and summon even more boxes:

Also note that the lifted box may seem to rotate and veer off-course slightly even 
though we're always applying an upward force. Two effects contribute to this: 
the natural inaccuracy of floating point numbers and subtle differences in contact 
responses on each of the different vertices when the box hits the ground.
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Applying impulses
Next, we'll work through an example of an impulse by creating a small explosive 
force at the location of the mouse cursor. In order to simulate an explosion, we 
will need to create a spherical trigger volume, instead of a box (since a box-shaped 
explosion would be really weird). When collisions are detected with this volume we 
can apply an impulse that points from the center of the explosion towards the target 
object(s), forcing the object away from its epicenter. However, we only want this 
object to linger for a single simulation step, so that we can tightly control the amount 
of acceleration applied to the target objects.

Since we want our explosion to be generated only temporarily when a key is pressed, 
this presents a problem when we interact with the Keyboard() command, since it is 
called once when a key is pressed, and continuously while the key is still held down. 
It's possible to tweak our input system to not repeat calls like this with a FreeGLUT 
function call (as mentioned previously in Chapter 1, Building a Game Application), but 
our camera moving code currently depends on the current style, so changing it now 
would cause a different set of problems.

So, what we can do is use a simple Boolean flag that tells us if we can create an 
explosion object. When we want to create an explosion, we will check if the flag is 
true. If so, we create the explosion and set the flag to false, and we will not set the 
flag back to true again until the key is released. This prevents subsequent calls to  
the Keyboard() function from creating another explosion trigger volume unless  
we detect a key up event.

This is a fairly straightforward process, and the source code for this chapter adds 
the relevant code to produce this effect with slight tweaks to the Keyboard(), 
KeyboardUp(), UpdateScene(), and CollisionEvent() functions of BasicDemo. 
The 3D math implemented in the code uses some simple vector arithmetic to obtain 
the final direction by converting the vector between them into a unit vector, and 
obtaining the final magnitude from the distance between the objects and some 
constant value (EXPLOSION_STRENGTH). With a direction and a magnitude, we  
can create our final impulse vector.
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Launch the application, place the mouse cursor somewhere near the boxes, and press 
the E key. This will result in an invisible explosion that pushes all the nearby objects 
away through a simple impulse force. The following screenshot shows what happens 
when an explosion is generated between the boxes (epicenter and direction of travel 
added for artistic flair):

Note that to simulate the explosion a little more realistically, the strength of the 
explosion follows an inverse law, since we wouldn't expect an object further from  
the center to experience the same impulse as those that are near.

if (dist != 0.0) strength /= dist;
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Also note that an additional parameter was added to the Raycast() function to 
allow us to decide whether we want it to return collisions with static objects or not 
(like the ground plane). These were ignored originally because we didn't want our 
DestroyGameObject() function to destroy the ground plane. But, now we need 
this special case in order to generate an explosion somewhere on the ground plane's 
edge; otherwise it would simply ignore them and we could only generate explosions 
on the edges of the boxes. It's set to false by default, to spare us from having to edit 
our existing calls to Raycast().

bool Raycast(const btVector3 &startPosition, const btVector3  
  &direction, RayResult &output, bool includeStatic = false);

Summary
Very little game logic can be built around a physics engine without a collision 
event system, so we made Bullet broadcast collision and separation events to our 
application so that it can be used by our game logic. This works by checking the  
list of manifolds, and creating logic that keeps track of important changes in these 
data structures.

Once we have these collision events, we need to do something with them, and we 
explored how to use a collision event between a box and an invisible trigger volume 
to instantiate a new object in our world, and how to capture these events within an 
instant of time when an explosion is generated.

In the next chapter, we will explore some of the more unusual types of collision 
shapes offered by Bullet.


